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What is the Generalized Autoregressive Method GaMM(1,1) Application: time-varying risk aversion in CCAPM
of Moments (GaMM)?

* GaMM extends Generalized Method of Moments (GMM) to a setting where a subset
of the parameters are expected to vary over time with unknown dynamics.

Agents have standard CRRA utility function. We assume that shocks to risk-aversion are
E¢—1 gt (wy; f1,0)] =0 (3) exogenous and that agents are myopic in the sense that they consider ~; to remain fixed
forever when making their decision at time ¢. This results in the Euler equation:
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* You only need to specify a set of conditional moment conditions and a set of parame- {wi) =ty @, 21} ) E; |8 (Cey1/Cy)™ " R =1 (14)
ters which are assumed to vary over time. GMM obiecti : - .
objective function at time ¢:
, , , , ] We can directly employ the GaMM framework by taking f; = ;.
* We approximate the dynamics by an autoregressive process driven by the score of
the local GMM criterion function to filter out the dynamic path of the time-varying Bt—1 (gt (wi; f1,0)]T By [g: (wi; [+, 0)] (5)
parameter. Simulation I'esultS
| . . - . We use the notion of Fréchet derivative to derive first-order conditions:
* Our approach is completely observation driven, such that estimation and inference If there is time-variation in y;, the full sample GMM estimates are severely biased towards
are entirely straightforward. Gg QrE; 1 |9t (wy; Fr,0)] = 0, (6) the high end realizations of the parameter. In contrast, the filtered path 4; obtained with
* GaMM is flexible, easily implementable, and allows for any parameter dynamics, e.g., G _p |99 (wy; ft,0) ; GaMM tends to follow the true path closely.
Structural breaks/ Slnus()ldal waves, AR(p), etc. t— bBit—-1 81_‘2' ( ) Risk-aversion parameter follows an AR(1) process
* GaMM generalizes GAS (Creal et al., 2013) to settings where densities are unknown . _ _ zz Standard full sample GMM e
or hard to derive. Where: Q; = {E;_; [g,9] ]} and H* is the Moore-Penrose pseudo inverse. The nature ob b & sl 3 o
of the problem determines whether and how G; needs to be estimated. 10_"’55‘Q Moy, .. Ok PN 025
5 'v ! - ﬁ] \ = Median
N \ W' GaMM(1,1) TV 075
Transition dynamics for f; — f;.1
Moti . 1 General updating step: K 0 o o 0 1000
otivating example
(T * T .
e Consider the problem of estimating the mean p of a random variable y;. = (G/4G)" G/ gy (wy; f1,0) (8) Empirical results for U.S. quaterly data (1947-2013)
° Given;noment c02ndition Elys — p] = 0, the standard GMM objective function would Time-varying parameter recursion: The are two components in the time-variation of 7. A short-term cycle follows the busi-
be (3 i—1(yt — 1))~ ; B(f twt A ©) ness cycle, agents adjust their consumption slowly and with a delay compared to the
. . = —w)+w s
e What if the true mean of y; changes at time 77 + 1, such that E|y;| = pgfort =1,...,17, A t ! reaction of financial markets. The long-term pattern shows a continuous decrease in risk
and E|y] = py fort =T+ 1,...,T, where py < p1? GaMM instruments: aversion since the 1950s. High risk-aversion estimated with GMM could be due to early
e The moment condition evaluated at time ¢ provides a signal about the direction in observations having high leverage.
which to adjust fi to locally obtain a better fit. 9r =g (w; [0, fi) ® [ 1 811 fr1 ]T (10) 6-
* We introduce GaMM dynamics for a time-varying parameter u; by considering a a “ S@ndargull sampge EMM -
GMM criterion function for the observation at time ¢ only, i.e., E;_1[y; — p;]°. T : C .
7 — A, ~ _ 5 27 E
 Taking the derivative of this objective function with respect to p; and evaluating it at g9=7 Z gt~ )| =0 (11) 7 B 2 “ g
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the tth observation rather than taking the expectation, we obtain the step =1 [\
Criterion function, where 6 corresponds to all static parameters, including w, A, B: 7 |
St = _2<yt — /'l't>° (1) 1950 1960 1970 1980 1990 2000 2010
T E]U.s. announces embargo agains Cuba a 1966 Bear Market and Credit Crunch ﬁSecond Oil Crisis @ Russia defaults on its domestic debt “Enron files for bankruptcy
) ) ] . rerlelg g ﬂg (12) &} Cuban missile crisis U1 1976 Bear Market (stagflation) & Black Monday & LTCM bailout Q" WorldCom files for bankruptcy
* We use s; to set-up autoregressive dynamics for the time-varying parameter p;:
pii1=w- (1 — B)+ By + Asy, (2)
where w, A, and B are static parameters that need to be estimated. .
Asymptotic theory Also in the paper... PDF @ zmks.co/gamm
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. Observations, [y} _ Moment condition, {g=y-y GaMM falls entirely within the standard framework of GMM estimation. Therefore, con- * Optimal instruments.
' 10 B sistency and asymptotic normality results follow from Hansen (1982), including an ex- e Two additional applications:
g can be eliminated by A E
. opting for a model with pression for the asymptotic covariance matrix of 8 under standard high-level regularity 1. Time-varying scale in stable distributions.
- ° diff .
> i 331119 N conditions. GaMM estimates the time-varying scale and remaining static parameters without bias.
. w 1 (5 q - ' - - 2. Endogenous regressor problem.
27 e % n / (9 — 90) — N (0, H "DH ) , = GOV QG (13) We benchmark GaMM against Kalman Filter, the Kalman Filter results are biased but with low sam-
pling variability, whereas paths obtained with GaMM are unbiased on average, but at the cost of a
0- The efficient weighting matrix is & = V', in which case the asymptotic covariance higher sampling variance.

matrix collapses to (GTQ G) ™. * Penalized criterion function which further reduces RMSE.



