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What is the Generalized Autoregressive Method
of Moments (GaMM)?
• GaMM extends Generalized Method of Moments (GMM) to a setting where a subset

of the parameters are expected to vary over time with unknown dynamics.
• You only need to specify a set of conditional moment conditions and a set of parame-

ters which are assumed to vary over time.
• We approximate the dynamics by an autoregressive process driven by the score of

the local GMM criterion function to filter out the dynamic path of the time-varying
parameter.

• Our approach is completely observation driven, such that estimation and inference
are entirely straightforward.

• GaMM is flexible, easily implementable, and allows for any parameter dynamics, e.g.,
structural breaks, sinusoidal waves, AR(p), etc.

• GaMM generalizes GAS (Creal et al., 2013) to settings where densities are unknown
or hard to derive.
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Motivating example
• Consider the problem of estimating the mean µ of a random variable yt.
• Given moment condition E[yt − µ] = 0, the standard GMM objective function would

be (
∑T

t=1(yt − µ))2.
• What if the true mean of yt changes at time T1+1, such that E[yt] = µ0 for t = 1, . . . , T1,

and E[yt] = µ1 for t = T1 + 1, . . . , T , where µ0 < µ1?
• The moment condition evaluated at time t provides a signal about the direction in

which to adjust µ̂ to locally obtain a better fit.
• We introduce GaMM dynamics for a time-varying parameter µt by considering a

GMM criterion function for the observation at time t only, i.e., Et−1[yt − µt]
2.

• Taking the derivative of this objective function with respect to µt and evaluating it at
the tth observation rather than taking the expectation, we obtain the step

st = −2(yt − µt). (1)

• We use st to set-up autoregressive dynamics for the time-varying parameter µt:

µt+1 = ω · (1−B) +Bµt + Ast, (2)

where ω, A, and B are static parameters that need to be estimated.
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GaMM(1,1)

Et−1 [gt (wt;ft,θ)] = 0 (3)

{wt} = {yt,xt, zt} (4)

GMM objective function at time t:

Et−1 [gt (wt;ft,θ)]
⊺Ωt Et−1 [gt (wt;ft,θ)] (5)

We use the notion of Fréchet derivative to derive first-order conditions:

G
⊺
tΩt Et−1 [gt (wt;ft,θ)] = 0, (6)

Gt = Et−1

[
∂gt (wt;ft,θ)

∂f
⊺
t

]
(7)

Where: Ωt =
{

Et−1
[
gtg

⊺
t

]}⋆ and H⋆ is the Moore-Penrose pseudo inverse. The nature
of the problem determines whether and how Gt needs to be estimated.

Transition dynamics for ft → ft+1

General updating step:

st =
(
G

⊺
tΩtG

)⋆
G

⊺
tΩtgt (wt;ft, θ) (8)

Time-varying parameter recursion:

ft+1 = B (ft − ω) + ω +Ast (9)

GaMM instruments:

ḡt = gt (wt; [θ,ft])⊗
[
1 st−1 ft−1

]⊺ (10)

ḡ =
1

T

T∑
t=1

ḡt ≈ E [ḡt (·)] = 0 (11)

Criterion function, where θ corresponds to all static parameters, including ω,A,B:

min
θ∈Θ

ḡ⊺Ω̄ḡ (12)
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Asymptotic theory
GaMM falls entirely within the standard framework of GMM estimation. Therefore, con-
sistency and asymptotic normality results follow from Hansen (1982), including an ex-
pression for the asymptotic covariance matrix of θ̂ under standard high-level regularity
conditions.

n1/2
(
θ̂ − θ0

)
d→ N

(
0,H−1D̄H−1

)
, D̄ = Ḡ⊺Ω̄V̄ Ω̄Ḡ. (13)

The efficient weighting matrix is Ω̄ = V̄ −1, in which case the asymptotic covariance
matrix collapses to (Ḡ⊺ Ω̄ Ḡ)−1.
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Application: time-varying risk aversion in CCAPM
Agents have standard CRRA utility function. We assume that shocks to risk-aversion are
exogenous and that agents are myopic in the sense that they consider γt to remain fixed
forever when making their decision at time t. This results in the Euler equation:

Et
[
β (Ct+1/Ct)

−γt Rx
t+1

]
= 1. (14)

We can directly employ the GaMM framework by taking ft = γt.

Simulation results
If there is time-variation in γt, the full sample GMM estimates are severely biased towards
the high end realizations of the parameter. In contrast, the filtered path γ̂t obtained with
GaMM tends to follow the true path closely.

Empirical results for U.S. quaterly data (1947–2013)
The are two components in the time-variation of γt. A short-term cycle follows the busi-
ness cycle, agents adjust their consumption slowly and with a delay compared to the
reaction of financial markets. The long-term pattern shows a continuous decrease in risk
aversion since the 1950s. High risk-aversion estimated with GMM could be due to early
observations having high leverage.
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Also in the paper... PDF @ zmks.co/gamm

• Optimal instruments.
• Two additional applications:

1. Time-varying scale in stable distributions.
GaMM estimates the time-varying scale and remaining static parameters without bias.

2. Endogenous regressor problem.
We benchmark GaMM against Kalman Filter, the Kalman Filter results are biased but with low sam-
pling variability, whereas paths obtained with GaMM are unbiased on average, but at the cost of a
higher sampling variance.

• Penalized criterion function which further reduces RMSE.
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