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Motivation
• Modelling cross-sections of interest rates in time is challenging.

• Successful models/methods are not well grounded in theory and rely on strong assumptions.

• Although short-term forecasting performance is usually good, the results are hard to explain

and hard to tie back to economics.

• We look at the dynamic Nelson-Siegel model (Diebold, Rudebusch, and Aruoba, 2006).

• Parameter-driven approach that requires assumptions about Gaussianity, homoskedas-

ticity, and independence.

• We want to know:

• Which assumptions should be relaxed at low/higher frequencies?

• What is the relative value-added of relaxing these distributional assumptions?

• What are relative performance gains depending on whether we use monthly, weekly,

or daily data.



Motivation
• We propose to extract latent factors using score-driven models (SDMs) which are easy to

implement and relatively quick to estimate.

• We can easily relax the normality, homoskedasticity, and independence assump-

tions. One at a time and all at once.

• Even though score-driven models tend to be misspecified, they have been shown

to offer similar fit to correctly specified models in the univariate setting (Koopman,

Lucas, and Scharth, 2016).

• We conduct a large scale Monte Carlo study to verify whether this holds in the mul-

tivariate setting as well.



Findings
• It is hard to beat the simple model for very short-term forecasts.

• We can expect out-performance after few periods.

• We can gain new insights about the nature of changes in the yield curve if we try.

• Allowing for time-varying variances improves fit the most at higher frequencies. At lower

frequencies, non-normality dominates.

• Performance improvement is visible mostly for shorter maturities.

• We find that SDM are able to fit the data very well (up to 30% improvement in likelihoods

and informational content).
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Score Driven Models (Creal et al., 2013)
A general class of likelihood-based observation-driven models with an observation equation:

yt ∼ p (yt|Yt−1, ft; θ) ,

Yt = {y1, . . . , yt} .

The transition equation / updating rule is autoregressive:

ft+1 = ω + B (ft − ω) + Ast(yt, ft).

where the innovation or ‘driving’ mechanism st is given as:

st = St∇t, ∇t =
∂p (yt|ft, Yt; θ)

∂f⊺t
,

St = I−k
t|t−1, It|t−1 = E [∇t∇⊺

t ] = − E
[
∂2p (yt|ft, Yt; θ)

∂f2t

]

Creal et al. (2018) extend the method to other loss functions, e.g., the GMM criterion.
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Creal et al. (2018) extend the method to other loss functions, e.g., the GMM criterion.

• Updates, st, can be linear, non-linear in ft.

• Scaling, St, can be linear, non-linear, or invariant in ft.

• Gradients and Hessian are familiar entities in estimation and optimization.

• Typically computationally simple to use.

• Provides an internally consistent and general updating rule.

• More of a method than a model (widely applicable, but also misspecified?).

• Arguably, the only difficulty... deriving It|t−1 (approximate methods are a work in progress,

papers often take shortcuts).



Score-driven Dynamic Nelson-Siegel Model

yt = Λft + εt, εt ∼ N (0,Σ) ,

Λ =
[
1 1−e−λτ

λτ
1−e−λτ

λτ − e−λτ
]
,

ft+1 = Φft + ηt, ηt ∼ N (0,Ω) .



Score-driven Dynamic Nelson-Siegel Model

yt = Λft + εt, εt ∼ t (0,Σ, ν) ,

Λ =
[
1 1−e−λτ

λτ
1−e−λτ

λτ − e−λτ
]
,

Σ = DtRDt,

Dt = diag
(
ω

2
1eht , . . . , ω

2
p eht

)
,

ft+1 = ω + B(ft − ω) + Ast.



Score-driven Dynamic Nelson-Siegel Model

• 2 parameter-driven benchmarks.

• 10 score-driven filters:

• 5 filters with fat-tails (robust to outliers),

• 6 filters allowing for heteroskedasticity,

• 2 filters allowing for contemporaneous correlations in pricing errors.



Simulations, DGPs

• For each data-generating process we construct 1,500 samples of length T=1,050.

• This corresponds to around 4 years of daily data.

• We simulate data for 11 maturities: 3, 6, 9, 12, 18, 24, 36, 60, 84, 108, and 120 months.



Homoskedastic simulations, in-sample fit, AIC



Homoskedastic simulations, in-sample fit, AIC



Homoskedastic simulations, out-of-sample RMSE, 1-
ahead



Heteroskedastic simulations, in-sample fit, AIC



Heteroskedastic simulations, in-sample fit, AIC



Out-of-sample RMSE, yields, 1-ahead



Out-of-sample RMSE, short-term yields, 1-ahead



Out-of-sample RMSE, curvature factor, 1-ahead



Out-of-sample RMSE, short-term yields, n-ahead



In-sample factor fit



In-sample, short-term yield fit



In-sample, medium-term yield fit



In-sample, long-term yield fit



Empirical application
• Zero-coupon yields from ICAP for 14 countries (sample periods and number of observations

in brackets):

• Australia (1999–2017, 4790)

• Canada (1999–2017, 4790)

• Czech Rep. (2005–2017, 3265)

• Denmark (1998–2017, 5130)

• Hungary (2005–2017, 3265)

• Japan (1998–2012, 3805)

• Norway (2000–2017, 4571)

• New Zealand (2005–2017, 3265)

• Poland (2006–2017, 2915)

• South Africa (2005–2017, 3265)

• Sweden (1998–2017, 5131)

• Switzerland (1997–2017, 5368)

• U.K. (1997–2017, 5368)

• U.S. (1997–2017, 5338)

• For most, short term rates are based on LIBOR. Medium and long term rates are based on

FRAs and SWAPs.

• 11 maturities: 3, 6, 9, 12, 18, 24, 36, 60, 84, 108, and 120 months.



Empirical application
AIC
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'GAS N pTV' -30.5 -32.41 -33.14 -32.8 -17.24 -48.19 -32.85 -28.97 -31.08 -15.52 -36.5 -41.17 -35.26 -33.58

'GAS t pTV' -31.22 -34.87 -34.11 -34.4 -18.18 -50.45 -33.72 -30.13 -32.08 -16.34 -38.21 -42.81 -36.68 -34.69
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'GAS t pTV+c' -41.76 -40.17 -39.45 -40.36 -23.52 -56.28 -44.12 -39.01 -37.17 -26.89 -45.88 -51.23 -42.52 -44.22



Empirical application
Log-likelihood
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Empirical application, U.S.
• Sample period is 1997–2017 (5338 observations at daily frequency).

• 11 maturities: 3, 6, 9, 12, 18, 24, 36, 60, 84, 108, and 120 months.

• If volatility is assumed to be constant, the average loglikelihood contribution is 12.8 and 13.7

for the Normal and t (with 17.8 degrees of freedom) densities respectively.

• ‘GAS t pTV’ achieves average loglikelihood contribution of 17.36 with 26.6 degrees of free-

dom.

Table 1

In-sample and out-of-sample fit for empirical data
The table contain estimation results for the dynamic Nelson-Siegel models considered in this paper. We fit
the models to U.S. and Polish daily interest rates. We report the average (per observation) contributions
to the log-likelihood (LL), AIC, and BIC measures. For clarity of exposition, we report RMSE and MAPE
values multiplied by 100.0.
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Empirical application, U.S., pricing errors volatility
‘GAS t 1TV’: fixed weights/ordering, higher persistence and smaller update average needs across

the cross-section
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‘GAS t pTV’: switching ordering, lower persistence and larger updates
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Empirical application, U.S., data frequency
Daily observations, ν = 26.64

120m12m6m

2007 Apr Jul Oct 2008 Apr Jul Oct 2009 Apr Jul Oct 2010 Apr Jul Oct
0.0

0.1

0.2

0.3

0.4

0.5

0.6
Volatility

CurvatureSlopeLevel

2007 Apr Jul Oct 2008 Apr Jul Oct 2009 Apr Jul Oct 2010 Apr Jul Oct
-8
-6
-4
-2
0
2
4
6
8

Mean factors

Monthly observations, ν = 18.04
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Empirical application, U.S., data frequency
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Empirical application, U.S., datasets
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Conclusions
• It is hard to beat the simple model for short-term forecasting.

• But we can gain new insights about the nature of changes in the yield curve from relaxing

some of the assumptions that would be very hard to relax with a parameter-driven model.

• At daily frequency, allowing for time-varying variances improves fit the most and uncovers

additional short-term risk factors.

• At lower frequencies, misfit due to the filters’ lagging requires fat tailed distributions.

• Performance improvement is visible mostly for shorter maturities.

• We find that SDM are able to fit the data very well (up to 30% improvement in likelihoods

and informational content).

• For complicated models implementation of SDMs offers considerable speed and implemen-

tation benefits.

• Conjecture: factors extracted with some SDMs are less likely to suffer from over-fitting and

can be used in subsequent macro/finance analyses.


